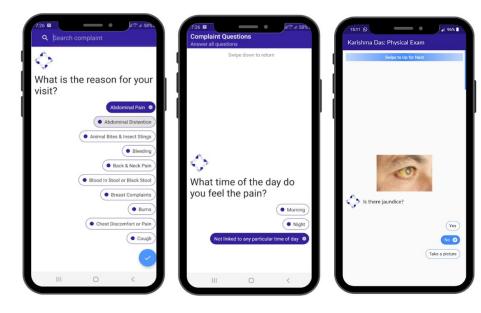


# Meet Ayu

## e e e Hello! l'm Ayu, a programmable digital health assistant. I support frontline health workers with evidence-based protocols for primary healthcare.

© Intelehealth 2022

## Why?


- In a telemedicine encounter, the patient-reported history is often the only clinical information available to the physician to make a diagnosis
- The medical history alone can lead to a diagnosis in 59-80% of cases, the physical exam can lead to a diagnosis in 8-20% of cases, and investigations in 8-20% of cases [1,2,3]
- Incomplete history taking is a leading factor contributing to diagnostic errors in telemedicine
   [4,5,6]
- Even in in-person care settings, a study by the World Bank shows that the average primary care consultation in India lasts 2.5 mins [7] and that in primary care clinics, licensed health care providers only completed between 16-22% of essential history-taking tasks [8,9].

### intelehealth

## What Ayu does

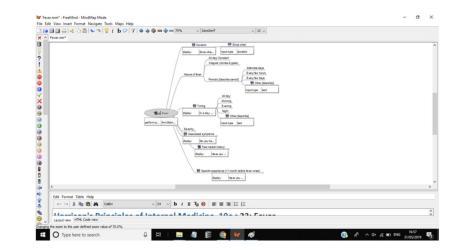
- Rules based clinical protocols for structured clinical data gathering
- Task shift clinical history taking to less busy health workers
- Improve quality of clinical information capture
- Improve the comprehensiveness of data capture
- Follow evidence-based clinical protocols for patient assessment & ensure critical questions are never omitted
- Added significance in an LMIC setting where diagnostic testing access is poor leading to a greater reliance by doctors on the patient history to make a diagnosis

## intelehealth



#### Presenting Complaints

- Abdominal Pain:
- Site Upper (R) Right Hypochondrium.
- · Pain does not radiate.
- · Since 2 Years.
- Onset Gradual.
- Timing Not linked to any particular time of day.
- Character of the pain Colicky / Intermittent (comes & goes), Dull, aching.
- · Severity Moderate.
- Exacerbating Factors Food.
- · Relieving Factors None.
- Menstrual history Menopausal
- · Prior treatment sought None.
- Additional information Her weight is unchanged. she reports feeling full even after eating a moderate sized meal.
- Associated symptoms:
- · Patient reports -
- Occasional migranes


## About Ayu

- 93 presenting complaints/clinical workflows developed & deployed
- Most available in 13 Indian languages
- Additional 70 are under development
- Over 1000+ history questions, 300+ physical exams
- Capture structured data, free text and images
- Multi-level adaptive logic questionnaires



## About Ayu

- Multi-level adaptive logic questionnaires
- Built using mind maps
- Exported to JSON files that can be consumed by the Intelehealth app
- Adaptable to context





### Intelehealth: Digital Public Good for telemedicine



Goel NA, Alam AA, Eggert EMR, Acharya S. Design and development of a customizable telemedicine platform for improving access to healthcare for underserved populations. 2017 39th Annu Int Conf IEEE Eng Med Biol Soc. IEEE; 2017. p. 2658–2661. Verma N, Lehmann H, Alam AA, Yazdi Y, Acharya S



## From data to intelligence

- Most healthcare data is unstructured!!!
- Structured data from Ayu can be used to,
  - Build rich data dashboards for program monitoring
  - Conduct disease surveillance
  - Predict disease risk
  - Train machine learning models
  - Simplify billing



## Future work

- Patient-facing version of the digital assistant
- SDK for incorporating the assistant into any digital health app
- No code protocol builder
- More optimized questionnaires improve precision (positive predictive value), improve recall (sensitivity) reduce time and improve comprehensiveness

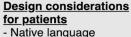
intelehealth

- Improved UI/UX
- Differential diagnosis engine (Rules based and AI based models) using the structured data
- Symptom coding in SNOMED
- Use of WHO SMART guidelines standards standards and FHIR compliance







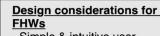

## Design requirements<sup>[10]</sup>

#### **Design considerations for** health organizations

- Standardization of service delivery
- Monitor FHW & doctor performance & adherence to
- protocols
- Evidence-based approach
- Minimize patient safety risks
- Minimize regulatory risks
- Improve program adoption








- Simple locally relevant terminology
- Responsive to patient's emotions & able to influence behavior - Promote trust &
- satisfaction



#### **Design considerations for** remote doctors

- Receive accurate medical information about the patient
- Information should be sufficient
- to arrive at a differential diagnosis
- Patient note should be succinct & easy to read
- Minimal irrelevant information
- Matching with teleconsult requests as per specialty & availability



- experience

- Works offline/ over low bandwidth internet











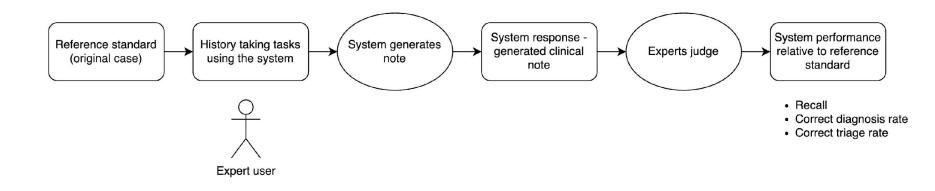


- Simple & intuitive user
- Native language
- Job aids
- Improve confidence
- Improve capacity
- Portable & uses less power



## Process of Knowledge acquisition to develop task shifting protocols to collect patient information [10]



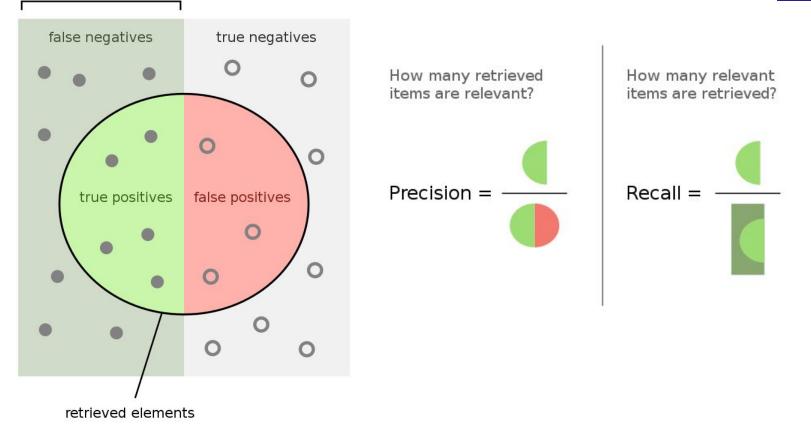

| No. | Stage                                                                                                                                                                        | Result                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1.  | Identified symptom list to cover the scope of most prevalent presenting complaints through literature review                                                                 | 67 presenting complaints identified                                               |
| 2.  | Created data collection questionnaires to collect subjective<br>data for the presenting complaints through a literature<br>review and synthesis of evidence-based guidelines | 67 data collection questionnaires compiled                                        |
| 3.  | Identified simple physical exams to collect objective data and map them to complaints                                                                                        | 143 exams identified                                                              |
| 4.  | Contextualized questionnaires to the etiology & epidemiology of disease in India.                                                                                            | 67 questionnaires contextualized                                                  |
| 5.  | Feasibility assessment to remove history-taking questions & physical exams that are difficult to task shift to health workers or have a high burden of training              | Questionnaire list reduced to 51, exam list reduced to 93                         |
| 6.  | Translation of content into local language and adaptation to improve comprehensibility for patients                                                                          | Translations complete & verified. 51 questionnaires & 93 physical exams modified. |
| 7.  | Adaptations to local social and cultural contexts                                                                                                                            | Adaptations complete & verified. 51 questionnaires & 93 physical exams modified.  |



# Evaluation



### Evaluation of information retrieval ability of Ayu




Recall (Sensitivity) = TP / TP + FN

*Image adapted from:* Hripcsak G, Wilcox A. Reference standards, judges, and comparison subjects: roles for experts in evaluating system performance. J Am Med Inform Assoc. 2002 Jan-Feb;9(1):1-15. doi: 10.1136/jamia.2002.0090001. PMID: 11751799; PMCID: PMC349383.

relevant elements

### intelehealth



#### Нx

A 49-year-old woman is referred for the evaluation of a 2-year history of upper gastrointestinal discomfort. She describes a daily, persistent ache or discomfort that waxes and wanes. She complains that eating tends to worsen her pain and that she feels very full, even after eating only a modest-sized meal. Her weight is unchanged, and her medical history is notable only for occasional migraine headaches. Her surgical history includes an appendectomy (age 7) and wisdom teeth extraction (age 16). She does not use tobacco products and rarely drinks alcohol. Her family history is noncontributory. She is an appropriate, interactive woman (body mass index [BMI] is 23.4 kg/m) Physical examination is notable only for mild epigastric tenderness to palpation. There is no evidence of ascites, organomegaly, a succussion splash, abdominal mass, or bruit. An upper gastrointestinal (UGI) series (2 years ago), abdominal ultrasound and hepatobiliary iminodiacetic (HIDA) scan (18 months ago), upper endoscopy (12 months ago), and 4-h solid-phase gastric emptying scan (4 months ago) were normal. She is Helicobacter pylorinegative. Extensive laboratory tests (complete blood count [CBC], erythrocyte sedimentation rate [ESR], liver function tests [LFTs], lipase, and electrolytes) have all been normal on at least two occasions. The patient asks you what her diagnosis is and how her symptoms can be treated.

Captured information Hx Missing information Hx Captured information Px Missing information Px

#### Abdominal Pain:

- Site Upper (C) Epigastric.
- · Pain does not radiate.
- 2 Years.
- · Timing Daily persistent pain or discomfort that waxes and wanes.
- · Character of the pain Dull, aching.
- Exacerbating Factors Food, She complains that she feels very full, even after eating only a
  modest sized meal.
- Associated symptoms:
- · Patient reports Occasional migraine headaches.

#### Family History

#### **Past Medical History**

- · Alcohol use Yes Rarely .
- Smoking history Patient denied/has no h/o smoking.
- · Operation Location/Type, Appendectomy at 7 years. , Occured on.

#### Vitals

Temp: Height: 154 cm Weight: 55.5 kg BMI: 23.40 SP02: % BP: / HR: RR:

#### **On Examination**

#### General exams:

- · Eyes: Jaundice-Don't know.
- · Eyes: Pallor-Don't know.
- Arm-Pinch skin\* Don't know.
- Nail abnormality-Don't know.
- · Nail anemia-Don't know.
- Ankle oedema-Don't know.

## intelehealth

### Results

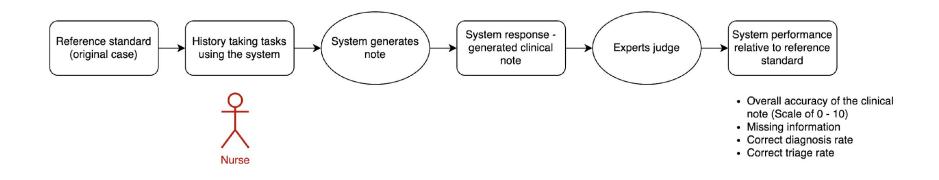
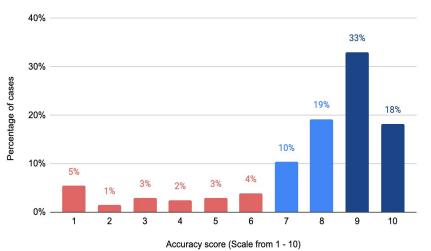

|  | Mean<br>Recall | Patient history = 0.65 ± 0.19<br>(n=190) or 65% |                        |
|--|----------------|-------------------------------------------------|------------------------|
|  |                |                                                 | Overall                |
|  |                |                                                 |                        |
|  |                |                                                 | High prevalence        |
|  | Mean           | Physical exam = $0.42 \pm 0.28$                 | Moderate<br>prevalence |
|  | Recall         | (n=174) or 42%                                  | Low prevalence         |
|  |                |                                                 |                        |
|  |                |                                                 | Infectious disease     |
|  |                |                                                 | Gastroenterology       |
|  | Correct        |                                                 | Cardiology             |
|  |                |                                                 | General medicine       |
|  | Dx rate        |                                                 | Dermatology            |
|  |                |                                                 | Pulmonology            |
|  |                |                                                 | Endocrinology          |
|  | Correct        |                                                 | Nephrology             |
|  |                | 000/                                            | Pediatrics             |
|  | triage<br>rate | 88%                                             | Neurology              |
|  |                |                                                 | Gynecology             |
|  | 10100          |                                                 | Hematology             |
|  |                |                                                 | Orthopedics            |
|  |                |                                                 | Ophthalmology          |
|  |                |                                                 |                        |

Table 3: Mean recall for patient history and physical exams

|                       | Mean recall ± std dev<br>(Patient history) | Mean recall ± std dev<br>(Physical exam) | Correct<br>triage rate | Correct diagnosis rate |
|-----------------------|--------------------------------------------|------------------------------------------|------------------------|------------------------|
| verall                | 0.65 ± 0.19 (n=190)                        | 0.42 ± 0.28 (n=174)                      | 88%                    | 68%                    |
|                       |                                            |                                          |                        |                        |
| igh prevalence        | 0.64 ± 0.22 (n=101)                        | 0.44 ± 0.29 (n=92)                       | 92%                    | 92%                    |
| loderate<br>revalence | 0.62 ± 0.16 (n=46)                         | 0.41 ± 0.28 (n=44)                       | 89%                    | 48%                    |
| ow prevalence         | 0.71 ± 0.15 (n=43)                         | 0.38 ± 0.26 (n=38)                       | 79%                    | 35%                    |
|                       |                                            |                                          |                        |                        |
| fectious diseases     | 0.62 ± 0.21 (n=54)                         | 0.46 ± 0.28 (n=50)                       | 87%                    | 78%                    |
| astroenterology       | 0.63 ± 0.16 (n=28)                         | 0.40 ± 0.26 (n=27)                       | 89%                    | 43%                    |
| ardiology             | 0.70 ± 0.18 (n=16)                         | 0.44 ± 0.32 (n=16)                       | 75%                    | 69%                    |
| eneral medicine       | 0.67 ± 0.18 (n=15)                         | 0.28 ± 0.33 (n=11)                       | 100%                   | 93%                    |
| ermatology            | 0.64 ± 0.28 (n=13)                         | 0.46 ± 0.36 (n=13)                       | 77%                    | 77%                    |
| ulmonology            | 0.60 ± 0.07 (n=12)                         | 0.50 ± 0.13 (n=12)                       | 83%                    | 17%                    |
| ndocrinology          | 0.56 ± 0.19 (n=10)                         | 0.29 ± 0.09 (n=10)                       | 90%                    | 100%                   |
| ephrology             | 0.58 ± 0.13 (n=8)                          | 0.38 ± 0.12 (n=7)                        | 88%                    | 75%                    |
| ediatrics             | 0.72 ± 0.15 (n=8)                          | 0.53 ± 0.25 (n=6)                        | 100%                   | 50%                    |
| eurology              | 0.69 ± 0.19 (n=7)                          | 0.47 ± 0.29 (n=6)                        | 100%                   | 71%                    |
| ynecology             | 0.90 ± 0.13 (n=6)                          | 0.61 ± 0.54 (n=3)                        | 100%                   | 50%                    |
| ematology             | 0.84 ± 0.08 (n=6)                          | 0.41 ± 0.25 (n=6)                        | 83%                    | 83%                    |
| rthopedics            | 0.64 ± 0.19 (n=5)                          | 0.19 ± 0.24 (n=5)                        | 100%                   | 100%                   |
| phthalmology          | 0.54 ± 0.35 (n=2)                          | 0.36 ± 0.51 (n=2)                        | 100%                   | 50%                    |
|                       |                                            |                                          |                        |                        |




### 2b: Evaluation of fidelity of use by nurses

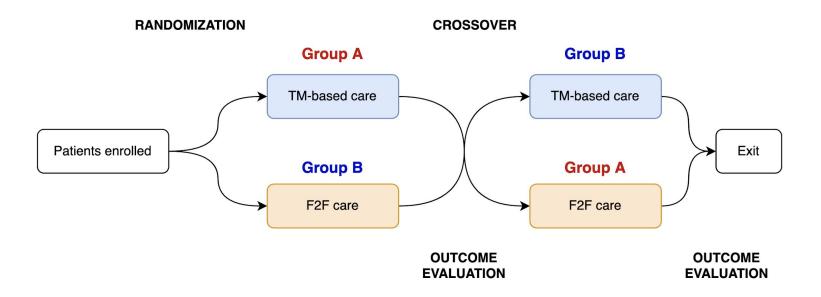




### Results

- Mean Accuracy =  $7.71 \pm 2.42$  (n= 203)
- Correct diagnosis rate = 74%
- Correct triage rate = 85%
- 58% (n=117) cases had no information missing, 17% (n=34) had some information missing that did not impact the diagnosis and 26% (n=52) had important information missing that would have changed the patient's diagnosis




Proportion of cases with high (9 or 10), acceptable (7 or

8), and poor (6 or below) accuracy scores



# Randomized cross over study comparing diagnosis & treatment outcomes of TM vs F2F care<sup>[11]</sup>

- 10 clinics in rural Gujarat, Sample size 104 patients, patient-diagnosis pair (n=?)
- Methods: Outcomes TM vs F2F Dx, Tx and Hx





### Telemedicine gives similar outcomes to F2F care

- 74% diagnostic concordance
- 80% treatment concordance
- No significant association was found between diagnosis and treatment concordance and
  - the order of consultation
  - FHW-doctor pair
  - Gender
  - mode of teleconsultation

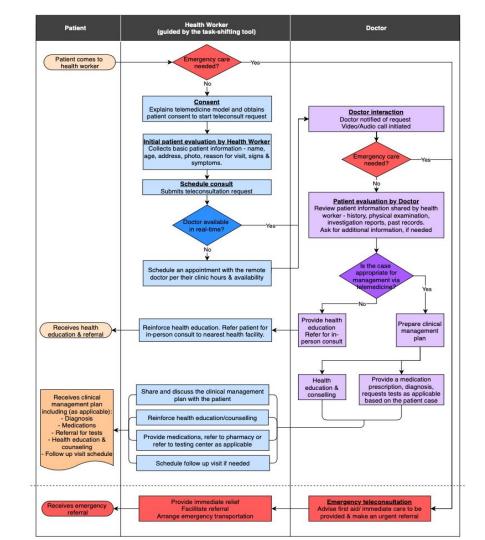
(Fisher's exact test, p > 0.05)

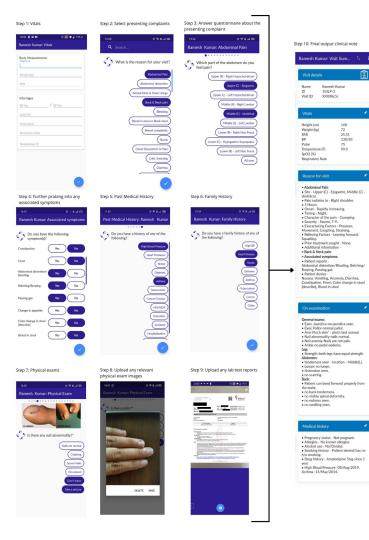
|                        | No. of<br>patients (n) | Percentage<br>(%) | Diagnosis<br>concordance<br>(% agreement) | p-value*<br>(two-sided) | Treatment<br>concordance<br>(% agreement) | p-value*<br>(two-sided) |
|------------------------|------------------------|-------------------|-------------------------------------------|-------------------------|-------------------------------------------|-------------------------|
| Order of consultation  | 104                    | 100%              | 74% (n=77)                                | p = 0.653               | 80% (n=83)                                | p = 0.806               |
| F2F consultation first | 59                     | 57%               | 76% (n=45)                                |                         | 81% (n=48)                                |                         |
| TM consultation first  | 45                     | 43%               | 71% (n=32)                                |                         | 78% (n=35)                                |                         |
| Location/CHO-doctor    | 104                    | 100%              | 74% (n=77)                                | p = 0.932               | 80% (n=83)                                | p = 0.929               |
| pair                   |                        |                   |                                           |                         |                                           |                         |
| HWC 1                  | 11                     | 11%               | 73% (n=8)                                 |                         | 91% (n=10)                                |                         |
| HWC 2                  | 11                     | 11%               | 73% (n=8)                                 |                         | 82% (n=9)                                 |                         |
| HWC 3                  | 8                      | 8%                | 50% (n=4)                                 |                         | 63% (n=5)                                 |                         |
| HWC 4                  | 10                     | 10%               | 70% (n=7)                                 |                         | 80% (n=8)                                 |                         |
| HWC 5                  | 10                     | 10%               | 70% (n=7)                                 |                         | 70% (n=7)                                 |                         |
| HWC 6                  | 10                     | 10%               | 80% (n=8)                                 |                         | 80% (n=8)                                 |                         |
| HWC 7                  | 13                     | 13%               | 85% (n=11)                                |                         | 85% (n=11)                                |                         |
| HWC 8                  | 9                      | 9%                | 78% (n=7)                                 |                         | 89% (n=8)                                 |                         |
| HWC 9                  | 11                     | 11%               | 82% (n=9)                                 |                         | 82% (n=9)                                 |                         |
| HWC 10                 | 11                     | 11%               | 73% (n=8)                                 |                         | 73% (n=8)                                 |                         |
| Gender                 | 104                    | 100%              | 74% (n=77)                                | p = 1.000               | 80% (n=83)                                | p =1.000                |
| Female                 | 70                     | 67%               | 74% (n=52)                                | •                       | 80% (n=56)                                |                         |
| Male                   | 34                     | 33%               | 74% (n=25)                                |                         | 79% (n=27)                                |                         |
| Mode of                | 100                    | 100%              | 73% (n=73)                                | p = 0.317               | 79% (n=79)                                | p = 0.294               |
| teleconsultation       |                        |                   |                                           | -                       |                                           | -                       |
| Asynchronous           | 84                     | 84%               | 71% (n=60)                                |                         | 77% (n=65)                                |                         |
| Synchronous            | 16                     | 16%               | 81% (n=13)                                |                         | 88% (n=14)                                |                         |
|                        |                        |                   |                                           |                         |                                           |                         |

\*Fisher's exact test was used to determine if there was a significant association between diagnosis and treatment concordance and the order of consultation, CHO-doctor pair, gender, type of case and mode of teleconsultation



### Telemedicine outcomes depend on the type of case


- A significant association was found between diagnosis and treatment concordance and the case specialty (Fisher's exact test, p < 0.05)</li>
  - High concordance seen in Hypertension,
     Diabetes, Obstetrics, Pediatrics, Orthopedics
  - Cohen's Kappa for diagnosis of diabetes
     = 0.93
  - Cohen's Kappa for diagnosis of hypertension = 0.89
  - Low concordance seen in Dermatology, Gynecology, Cardiology, Non-specific illnesses


|                  | No. of<br>patients (n) | Percentage<br>(%) | Diagnosis<br>concordance | p-value*<br>(two-sided) | Treatment<br>concordance | p-value*<br>(two-sided) |
|------------------|------------------------|-------------------|--------------------------|-------------------------|--------------------------|-------------------------|
|                  |                        |                   | (% agreement)            |                         | (% agreement)            |                         |
| Type of          | 113                    | 100%              | 74% (n=113)              | p = 0.004               | 80% (n=90)               | p = 0.028               |
| case/Speciality  |                        |                   |                          |                         |                          |                         |
| Hypertension     | 21                     | 19%               | 95% (n=20)               |                         | 95% (n=20)               |                         |
| Diabetes         | 15                     | 13%               | 93% (n=14)               |                         | 93% (n=14)               |                         |
| Obstetrics       | 10                     | 9%                | 80% (n=8)                |                         | 80% (n=8)                |                         |
| Pediatrics       | 17                     | 15%               | 76% (n=13)               |                         | 88% (n=15)               |                         |
| Orthopedics      | 18                     | 16%               | 72% (n=13)               |                         | 78% (n=14)               |                         |
| Gastroenterology | 6                      | 5%                | 67% (n=4)                |                         | 67% (n=4)                |                         |
| Dermatology      | 8                      | 7%                | 63% (n=5)                |                         | 75% (n=6)                |                         |
| Gynecology       | 5                      | 4%                | 60% (n=3)                |                         | 60% (n=3)                |                         |
| Cardiology       | 3                      | 3%                | 33% (n=1)                |                         | 33% (n=1)                |                         |
| Miscellaneous    | 10                     | 9%                | 30% (n=3)                |                         | 50% (n=5)                |                         |

\*Fisher's exact test was used to determine if there was a significant association between diagnosis and treatment concordance and the order of consultation, CHO-doctor pair, gender, type of case and mode of teleconsultation

Cannot conclude due to low sample sizes







168

25.51

75 99.0

130/85

72

## intelehealth

## References

- 1. Roshan M, Rao AP. A Study on Relative Contributions of the History, Physical Examination and Investigations in Making Medical Diagnosis. J Assoc Physicians India. 2000;48(8):771–775. PMID: 11273467
- 2. Peterson MC, Holbrook JH, Hales D Von, Smith NL, Staker L V. Contributions of the history, physical examination, and laboratory investigation in making medical diagnoses. West J Med. BMJ Publishing Group; 1992;156(2):163. PMID: 1536065
- 3. Hampton JR, Harrison MJ, Mitchell JR, Prichard JS, Seymour C. Relative contributions of history-taking, physical examination, and laboratory investigation to diagnosis and management of medical outpatients. Br Med J. BMJ Publishing Group; 1975;2(5969):486. PMID: 1148666
- 4. Katz HP, Kaltsounis D, Halloran L, Mondor M. Patient Safety and Telephone Medicine. J Gen Intern Med. Springer-Verlag; 2008;23(5):517–522. PMID: 18228110
- 5. Resneck JS, Abrouk M, Steuer M, Tam A, Yen A, Lee I, et al. Choice, Transparency, Coordination, and Quality Among Direct-to-Consumer Telemedicine Websites and Apps Treating Skin Disease. JAMA dermatology. American Medical Association; 2016;152(7):768–75. PMID: 27180232
- 6. Schoenfeld AJ, Davies JM, Marafino BJ, Dean M, DeJong C, Bardach NS, et al. Variation in Quality of Urgent Health Care Provided During Commercial Virtual Visits. JAMA Intern Med. American Medical Association; 2016;176(5):635.
- 7. Irving G, Neves AL, Dambha-Miller H, Oishi A, Tagashira H, Verho A, et al. International variations in primary care physician consultation time: A systematic review of 67 countries. BMJ Open. 2017. PMID: 29118053
- 8. Das J, Holla A, Mohpal A, Muralidharan K. Quality and Accountability in Health Care Delivery: Audit-Study Evidence from Primary Care in India. Am Econ Rev. 2016;106(12):3765–99. PMID: 29553219
- 9. Das J, Holla A, Das V, Mohanan M, Tabak D, Chan B. In urban and rural India, a standardized patient study showed low levels of provider training and huge quality gaps. Health Aff (Millwood). NIH Public Access; 2012;31(12):2774–84. PMID: 23213162
- 10. Verma N, Lehmann H, Alam AA, Yazdi Y, Acharya S. Development of a digital assistant to support teleconsultations between remote doctors and frontline health workers in India: A User-centered Design Approach. JMIR Human Factors. 10/09/2022:25361 (forthcoming/in press)
- 11. Verma N, Buch B, Taralekar R, Acharya S. Diagnostic concordance of telemedicine as compared to face-to-face care in primary health care clinics in rural India: a randomized crossover trial. JMIR Preprints. 17/09/2022:42775